How to Model

CoSMo 2014
Gunnar Blohm
Computational neuroscience?

- It is the use of mathematical, engineering, and computer science tools to attempt answering neuroscience questions.
- Builds mathematical models describing computations in the brain that give rise to mental abilities.
- A way to put “word models” into mathematical language and to analyze the result:
 - Identify hidden assumptions
 - Explain observations
 - Make predictions
- Interdisciplinary: neuroscience, cognitive science, psychology, electrical engineering, computer science, physics, mathematics, life science, health science, medicine, etc…
Goals

- Gain complete understanding of some experimental phenomenon
- Identify hypotheses, assumptions, unknowns
- Make quantitative predictions
- Build a theoretical brain as a model of the real brain (stroke lesions etc)
- Inspire new technologies
- Models of neurological diseases to help treatment, rehabilitation, quality of life
- Guidance in designing useful experiments (i.e. animal research)
Why model brain function?

- Models help answering three potential types of questions about the brain (Dayan & Abbott, 2001)
 - Descriptive = What?
 - Compact summary of large amounts of data
 - Mechanistic = How?
 - Show how neural circuits perform complex function
 - Interpretive = Why?
 - Computations in the brain are usually performed in an optimal or nearly optimal way
 - Understanding optimal algorithms and their implementation to explain why the brain is designed the way it is
How to start?

- Define a precise question/goal!
 - What exact aspect of data do you want to model?
 - Define the question/goal with as much precision as possible!
 - Try to identify data constraints, limitations in the data set, problems with data recording, etc. that affect your model
 - Also identify what you do NOT want to address
 - This is the most crucial step!!! Otherwise you’ll get lost…
 - Write it all down!

- Review the literature!
 - Alternative models?
 - Complementary models?
 - Previous models as a starting point?
Then what?

- Decide on the approach!
 - Chose the appropriate tools
 - What level of detail do you need?
 - Normative model, systems approach, neural implementation, synaptic processing, etc…

- Keep the model as simple as possible, but as complex as needed!
 - Every element in the model must be a crucial component required to reproduce the phenomenon you try to model
 - Remove model components to see how the model is impacted

- Implement your model and make smart changes as you go…
Model evaluation?

- How do you know if this is a good model?
- Criteria?
 - Obviously, the model should meet your goals!
 - How do you evaluate this?
 - Can the model reproduce any other data sets?
 - How general is the model?
 - The more data it can describe, the better
 - Does the model make any TESTABLE predictions?
 - The more precise they are, the better!
 - Do you get any mechanistic insights into a phenomenon that you could not have gotten from the data alone?
Happy modelling @ CoSMo 2014!