COSMO 2103 Exercise – Smith: [Simulating multirate adaptation and viscoelastic primitives]

1. For the single-state autoregressive trial-to-trial model of error-dependent learn discussed in class:

 \[
 e(n) = F(n) - x(n) \\
 x(n+1) = Ax(n) + Be(n)
 \]

 (a) A is usually close to (but less than) 1 (>0.7) and B is usually small (<0.3) and positive. Simulate the step response of this error-dependent learning model for a couple different value pairs for A & B.

 (b) *Optional* - Derive the asymptotic learning level \(x_\infty / F_\infty = B / (1 - A + B) \) and the time constant for learning in terms of the model parameters, A & B.

 (c) *Optional* - For what values of A & B is this error-dependent learning rule stable (in the BIBO sense)? Sketch the region of stability on an A-B axis.

2. Consider the parallel two-state (second order) version of this learning rule.

 (a) Simulate the step response (120 trials) for this learning rule.

 \[
 e(n) = F(n) - x(n) = F(n) - [xf(n) + xs(n)] \\
 xf(n+1) = Af*xf(n) + Bf e(n) \\
 xs(n+1) = As*xs(n) + Bs e(n)
 \]

 Let:

 \[
 F(0)=0; \ F(n)=1 \ for \ n>0. \\
 Af=0.6, \ Bf=0.2, \ As=0.99, \ Bs=0.02.
 \]

 (b) Simulate savings (rapid relearning).

 (c) Simulate Spontaneous recovery in a block of following learning and unlearning Error-Clamp trials.

 (d) *Optional* – [Difficult] How does the amount of spontaneous recovery depend on the parameters \{Af, Bf, As, & Bs\}.

 (b) *Optional* – Derive the asymptotic learning level for this learning rule as a function of the parameters for the 2nd order and versions of this learning rule.

4. Simulate the first order gradient descent learning rule in Sing et al 2009, where motor adaptation is posited to result from a population of motor primitives with positively correlated responses to the position and velocity of motion. In particular, simulate the adaptive responses shown in panel 3C of that paper.