Sensory-motor computations
Outline

- Introduction (Day 1) – Sabes
- Sensory-motor transformations – Blohm
 - Population coding and parallel computing
 - Modelling sensory-motor mappings with artificial neural networks
- Tutorial: gain modulations for reference frames – Blohm

- Multi-sensory integration (Day 2) – Blohm
- Sensory-motor control – Sabes
 - Efference copy, forward models and Kalman filters
 - Prisms and inter-sensory adaptation
- Tutorial: Kalman filter and LQR – Sabes
Motor planning

- Hand-goal distance computation

Blohm et al. 2009
Sensory-motor transformations
Sensory-motor transformations

- Justin: DLR robot – ball catching
 - Sensory ref frames ~ motor ref frame…
 - Sensory code ~ motor code…
Sensory-motor transformations

- Reference frames
 - Determined by sensory and motor apparatus
 - Vision: attached to the retina
 - Audition: attached to the head
 - Proprioception: relative joint angles
 - Arm movement: relative to attachment at shoulder
Sensory-motor transformations

- Reference frames
 - Knowledge about reference frames is required to localize sensory and motor events
 - Same retinal image – different spatial locations
Sensory-motor transformations

- **Reference frames**
 - The relative orientation of different sensory and motor reference frames is not fixed
 - Changes with every movement
 - 6D changes (e.g. Eyes re. Shoulder)
 - Non-commutative

Tweed & Vilis, 1987

Blohm et al. 2009
Reference frames

A reference frame transformation is needed to map sensory to motor coordinates

Requires estimates of body geometry

Blohm et al. 2009
Reference frames

- A reference frame transformation is needed to map sensory to motor coordinates
 - Requires estimates of body geometry
 - Noise in estimates \rightarrow stochastic reference frame transformations

μ_1, σ_1^2 $\xrightarrow{\text{Ref. Frame Transformation}}$ μ_2, σ_2^2

$\sigma_1^2 < \sigma_2^2$
Signal-dependent sensory noise

- Reach variability depends on gaze fixations
- Signal-dependent noise in muscle spindles explains arm position variability
- Neuronal noise is signal-dependent (Poisson)

![Graph showing relationship between spike-count mean and variance](Maimon & Assad (2009))

![Graph showing angle errors](Scott & Loeb (1994))

![Graph showing reach standard deviation](Blohm & Crawford (2007))
Examples: reference frame transformations

- Saccades

 - Shortest path
 - Listing's law

Klier & Crawford (1998)
Examples: reference frame transformations

- **Reaching / pointing**

 - **C** Head-unrestrained (45° oblique fixation)
 - **D** Head-roll (30° CCW)

 Blohm, & Crawford (2007)

 Leclercq et al. (in preparation)

 Blohm, Keith & Crawford (2009)
Examples: reference frame transformations

- Moving body / objects

Smooth pursuit

Blohm & Lefevre (2010)
Leclercq et al. (in preparation)
Examples: reference frame transformations

- Moving body / objects

 Manual tracking

 Leclercq et al. (in preparation)

 Leclercq et al. (2012)
Examples: reference frame transformations

- Visual-motor transformation deficits in optic ataxia

![Visual-motor transformation deficits in optic ataxia](image)

Khan et al. (2005a, b, 2009)
Examples: reference frame transformations

- Reference frame transformation deficits in optic ataxia

Khan, Pisella, Blohm (in revision)
Population coding and parallel computing
Direct vs. population coding

- **Vision:** population code
- **Movement:** digital / current command to actuators
Cosine tuning

- Tuning curves to wind direction for low-velocity interneurons of cricket cercal system
- Cosine tuning: \(\left(\frac{f(s)}{r_{\text{max}}} \right) = [\cos(s - s_a)]_+ \)
 - Firing rate \(f \)
 - Preferred direction \(s_a \)
- 4 neurons can encode all wind directions!

\[
\vec{v}_{\text{est}} = \sum_{a=1}^{4} \left(\frac{r}{r_{\text{max}}} \cdot \vec{c}_a \right)
\]

Dayan & Abbott, 2001

CoSMo 2012 - G. Blohm
Aug 6-7, 2012
Cosine tuning

Motor-related cosine tuning in PMv and M1

Kakei, Hoffman, Strick, 2003
Population codes

- Cricket wind direction: 4 neurons = population coding!
 - Principle: each neuron codes for a different set of stimulus values
 - Together, all neurons encode all possible stimuli as a population
 - Redundancy is always present! (counter-example: cricket)
 - Example: Gaussian receptive fields

Dayan & Abbott, 2001
Population codes

- Encoding a stimulus using population codes

Dayan & Abbott, 2001
Narrow versus wide tuning

- **Question:** what is better, narrow or wide tuning?
 - For fixed noise, within one layer: narrow is better!
 - In a neural network, output tuning curves should be wider than input tuning curves
 - Information in the output layer cannot be greater than in the input layer
 - Sharpening tuning curves in the output can only decrease (or at best preserve) information content
 - Result: the wide tuning of the input layer contains more information that the narrow tuning in the output layer
- **Consequence for the brain:** narrow-to-wide in processing hierarchy

Pouget & Sejnowski, 1997
Population codes

- Example: cue combination with population codes
 - Probabilistic population codes
 - Poisson-like neural noise
 - Variance inversely related to gains of population code

Ma et al. Nat Neuro 2006
Modelling sensory-motor mappings with artificial neural networks

ANN architecture and connectivity
Goals

- Feasibility of neural network implementation
 - Mostly trivial...
- More interesting questions
 - What is the optimal network structure given a fixed number of neurons / units?
 - What properties emerge from training?
 - Can these emerging properties explain aspects of real brain function / dysfunction?
 - Can we understand the difference between electrophysiological techniques (e.g. recording vs. stimulation)?
 - ...

Aug 6-7, 2012 CoSMo 2012 - G. Blohm
From spikes to firing rates

- **Approximations**
 - **Size**
 - One unit in a rate-based network represents average local population behaviour
 - One units’ behaviour mimics population computations
 - **Time**
 - Average firing rate does not capture spike dynamics, variability in spikes etc
 - Complexity of spike time interactions within a network lost
Feed-forward networks

- **Input**
 - E.g. sensory feature vector
 - Sampling

![Image of a feed-forward network diagram](Trappenberg 2010)
Feed-forward networks

- Perceptron

\[r_i^{in} = x_i \quad \rightarrow \quad y = r_i^{out} \]

Example: \(y = w_1 \cdot x_1 + w_2 \cdot x_2 \)

General single-layer mapping (= simple perceptron)

\[r_i^{out} = g \left(\sum_j w_{ij} r_j^{in} \right) \quad \Leftrightarrow \quad r^{out} = g(w r^{in}) \]
Feed-forward networks

- Perceptron

Example: \(g(x) = x \)

\[y = w_1 \cdot x_1 + w_2 \cdot x_2 \]

\(w_1 = 1, \quad w_2 = -1 \)

\(\rightarrow \) Good generalization of network!
Feed-forward networks

- **Perceptron**

 ![Perceptron Diagram](image)

 Boolean function g: threshold node

 $$g(x) = \begin{cases}
 1 & \text{if } x > \Theta \\
 0 & \text{elsewhere}
 \end{cases}$$

 Linear separable function

 Not linear separable

 Trappenberg 2010

CoSMo 2012 - G. Blohm

Aug 6-7, 2012
Feed-forward networks

- **Multi-layer perceptron**
 - Universal function approximator
 - Given enough hidden nodes, any function can be approximated with arbitrary precision
 - Example: sine wave approx. with logistic transfer function

\[
f(x) = \frac{1}{1 + e^{-x}}
\]

Trappenberg 2010
Feed-forward networks

- Multi-layer perceptron
 - Generalization = performance outside the training set
 - Good interpolation abilities for sigmoid networks

![Graph showing overfitting and underfitting](Trappenberg 2010)
Feed-forward networks

- **Multi-layer perceptron**
 - **Limitations**
 - Brain-like performance does NOT mean the brain performs some mapping the same way
 - Training rules are non-physiologic (see next section)

- **Strengths**
 - Hidden layer activity might resemble brain function
 - given appropriate choices of input and output codings
 - The brain = a mapping network
 - Self-organization, analogous to the brain
 - High flexibility in possible computations
Neural transfer functions

\[r_j^h = f(r_j^{in}, w_h) \]

\[f : x \in S_1^{n^{in}} \rightarrow y \in S_2^{n^h} \]
Neural transfer functions

- Naka-Rushton function (1966)

\[
S(P) = \begin{cases}
\frac{MP^N}{\sigma^N + P^N} & \text{for } P \geq 0 \\
0 & \text{for } P < 0
\end{cases}
\]

Visual neurons (LGN, V1, MT)
Response to stimuli with different contrasts
Neural transfer functions

- Idealized transfer functions in nodes
 - Satlin Transfer Function: $a = satlin(n)$
 - Satlins Transfer Function: $a = satlins(n)$
 - Hard-Limit Transfer Function: $a = hardlim(n)$
 - Linear Transfer Function: $a = purelin(n)$
 - Log-Sigmoid Transfer Function: $a = logsig(n)$
 - Tan-Sigmoid Transfer Function: $a = tansig(n)$

The Mathworks Inc
Modelling sensory-motor mappings with artificial neural networks

Training algorithms
Training algorithms

- **Gradient descent**

 Cost function:
 \[
 E = \frac{1}{2} \sum_i \left(r_{i}^{\text{out}} - y_i \right)^2
 \]

 (mean squared error)

 Goal: minimize the cost function

 - Change network weights

 \[
 w_{ij} \leftarrow w_{ij} + \Delta w_{ij}
 \]

 \[
 \Delta w_{ij} = -\varepsilon \cdot \frac{\partial E}{\partial w_{ij}}
 \]
Training algorithms

- Gradient descent

\[\frac{\partial E}{\partial w_{ij}} = \frac{1}{2} \frac{\partial}{\partial w_{ij}} \left(\sum_{i} g \left(\sum_{j} w_{ij} r_{j}^{in} \right) - y_{i} \right)^{2} \]

- With chain rule

\[\frac{\partial f}{\partial w_{ij}} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial h} \frac{\partial h}{\partial w_{ij}} \]

- Delta rule: \[\Delta w_{ij} = \varepsilon \cdot g'(h_{i}) \cdot (y_{i} - r_{i}^{out}) r_{j}^{in} \]
Training algorithms

- Gradient descent
 - Linear perceptron: \(g(h_i) = h_i \)
 \[g'(h_i) = 1 \]

- Perceptron learning rule: \(\Delta w_{ij} = \epsilon \cdot (y_i - r_i^{out}) r_j^{in} \)

 - Works also for most other transfer functions \(g \)
 - Similarity to Hebbian learning (supervised Hebbian):
 - Increase / decrease proportional to network error AND input strength
Training algorithms

- Generalization to multi-layer perceptrons
 - Back-propagation
 \[r^{\text{out}} = g\left(w^{\text{out}} r^{h}\right) \]
 \[r^{\cdot \text{out}}_i = g\left(\sum_j w^{\text{out}}_{ij} r^{h}_j\right) \]

- 3-layer perceptron:
 \[r^{\text{out}} = g^{\text{out}}\left(w^{\text{out}} g^{h}\left(w^{h} r^{\text{in}}\right)\right) \]

Weights to adjust
Training algorithms

- Generalization to multi-layer perceptrons
 - Back-propagation
 - Generalized delta rule: output weights

\[
\frac{\partial E}{\partial w_{ij}^{out}} = \frac{1}{2} \frac{\partial}{\partial w_{ij}^{out}} \sum_i (r_{i,\text{out}} - y_i)^2
\]

\[
= \delta_{i,\text{out}}^{\prime} r_{j,\text{out}}^{h}
\]

with
\[
\delta_{i,\text{out}}^{\prime} = g^{\prime}_{\text{out}}(h_{i,\text{out}}^{h})(r_{i,\text{out}} - y_i)
\]
Training algorithms

- Generalization to multi-layer perceptrons
 - Back-propagation
 - Generalized delta rule: hidden layer weights

\[
\frac{\partial E}{\partial w_{ij}^h} = \frac{1}{2} \frac{\partial}{\partial w_{ij}^h} \sum_i \left(r_{i}^{\text{out}} - y_i \right)^2 \\
= \frac{1}{2} \frac{\partial}{\partial w_{ij}^h} \sum_i \left(g_{i}^{\text{out}} \left(\sum_j w_{ij}^{\text{out}} g_j^h \left(\sum_k w_{jk}^h r_{k}^{\text{in}} \right) \right) - y_i \right)^2 \\
= \delta_{i}^{h} \cdot r_{j}^{\text{in}} \\
\text{with } \delta_{i}^{h} = g^h \left(h_{i}^{\text{in}} \right) \sum_k w_{ik}^{\text{out}} \delta_{k}^{\text{out}}
\]

Back-propagation of error term!
Network design and analysis
Network design

- Stick to known physiology as much as possible
 - Input / output coding
 - Connectivity
 - Transfer functions
 - Learning rule?

- E.g. 3-D reach planning network

Blohm, Keith, Crawford, 2009; Blohm, 2012
Network analysis

- Receptive fields
 - = activation pattern of a neuron for targets across space

Blohm, Khan, Crawford, 2009 (adapted from Andersen, et al., 1985)
Gain modulation

- change of receptive field strength with secondary input
- E.g. eye position gain modulation of visual receptive fields in posterior parietal cortex

Blohm, Khan, Crawford, 2009 (adapted from Andersen, et al., 1985)
Gain modulation

- Reference frame transformations
 - Zipser & Andersen, Nature 1988

Eye position gain modulation of hidden layer units
Gain modulation

- Powerful computational means for
 - Cue combination
 - Reference frame transformations
 - Multi-sensory integration...

![Gain field theory diagram](image)

Blohm & Crawford, 2009
Reference frame transformations

- Reference frames based on “electrophysiological” analysis of a 3-D visuo-motor transformation network

Blohm, Keith, Crawford, 2009
Conclusion
Conclusion

- Feed-forward rate-based networks are the simplest form of ANNs
 - Computationally efficient
 - Powerful
 - But non-trivial mapping to biology?
- Learning algorithms
 - Fast and robust algorithms can be found
 - Mostly remote from biology
 - More complicated algorithms are more realistic
- FF-ANNs are very useful tools for investigating
 - Computations in the brain (reference frames, multi-sensory, …)
 - Hierarchical processing
 - Receptive fields
 - …
This afternoon...

- Implement back-propagation learning
- Analyze gain fields and receptive fields
Matlab tutorial: ANNs and gain fields
Exercise 1: Back-propagation

- Goal: program a simple feed-forward neural network and train it with back-propagation
 - Task: retinal-to-spatial transformation in 1-D
 - Spatial = retinal + eye orientation
 - 3-layer: input, hidden layer, output
 - Input: 1-D retinal map
 - Transfer functions: sigmoid
 - Output: 1-D spatial map
 - Training method: error back-propagation
 - Generate random training set
Exercise 1: Back-propagation

\(w_{ij} \leftarrow w_{ij} + \Delta w_{ij} \)

\(\Delta w_{ij} = -\varepsilon \cdot \frac{\partial E}{\partial w_{ij}} \)

\(\Delta w_{ij} = \varepsilon \cdot (y_i - r^{out}_i) r^{'in}_j \)

\[
\frac{\partial E}{\partial w_{ij}^{out}} = \frac{1}{2} \frac{\partial}{\partial w_{ij}^{out}} \sum_i (r_i^{out} - y_i)^2 = \delta_i^{out} r_j^{h}
\]

with \(\delta_i^{out} = g^{out}(h_i^{h})(r_i^{out} - y_i) \)

\[
\frac{\partial E}{\partial w_{ij}^{h}} = \frac{1}{2} \frac{\partial}{\partial w_{ij}^{h}} \sum_i (r_i^{out} - y_i)^2 = \frac{1}{2} \frac{\partial}{\partial w_{ij}^{h}} \sum_i \left(g^{out} \left(\sum_j w_{ij}^{out} g^{h} \left(\sum_k w_{jk}^{h} r^{'in}_k \right) \right) - y_i \right)^2 = \delta_i^{h} r_j^{in}
\]

with \(\delta_i^{h} = g^{h}(h_i^{in}) \sum_k w_{ik}^{out} \delta_k^{out} \)
Exercise 2: RF & gain field analysis

- Use Matlab neural network toolbox
 - Code provided
- Train a network
 - (just run the code)
 - You can use different versions of back-propagation (default: resilient back-prop)
- Plot RFs for individual hidden layer and output layer units
- How do these RFs change with eye orientation?
 - Gain fields versus RF shifts...